Single and Multiple Index Functional Regression Models with Nonparametric Link
نویسندگان
چکیده
Fully nonparametric methods for regression from functional data have poor accuracy from a statistical viewpoint, reflecting the fact that their convergence rates are slower than nonparametric rates for the estimation of high-dimensional functions. This difficulty has led to an emphasis on the so-called functional linear model, which is much more flexible than common linear models in finite dimension, but nevertheless imposes structural constraints on the relationship between predictors and responses. Recent advances have extended the linear approach by using it in conjunction with link functions, and by considering multiple indices, but the flexibility of this technique is still limited. For example, the link may be modelled parametrically or on a grid only, or may be constrained by an assumption such as monotonicity; multiple indices have been modeled by making finitedimensional assumptions. In this paper we introduce a new technique for estimating the link function nonparametrically, and we suggest an approach to multi-index modeling using adaptively defined linear projections of functional data. We show that our methods enable prediction with polynomial convergence rates. The finite sample performance of our methods is studied in simulations, and is illustrated by an application to a functional regression problem.
منابع مشابه
Variable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملA Comparison of Thin Plate and Spherical Splines with Multiple Regression
Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...
متن کاملBayesian quantile regression for single-index models
Using an asymmetric Laplace distribution, which provides a mechanism for Bayesian inference of quantile regression models, we develop a fully Bayesian approach to fitting single-index models in conditional quantile regression. In this work, we use a Gaussian process prior for the unknown nonparametric link function and a Laplace distribution on the index vector, with the latter motivated by the...
متن کاملSingle-Vehicle Run-Off-Road Crash Prediction Model Associated with Pavement Characteristics
This study aims to evaluate the impact of pavement physical characteristics on the frequency of single-vehicle run-off-road (ROR) crashes in two-lane separated rural highways. In order to achieve this goal and to introduce the most accurate crash prediction model (CPM), authors have tried to develop generalized linear models, including the Poisson regression (PR), negative binomial regression (...
متن کاملEfficient Estimation in Partially Linear Single-Index Models for Longitudinal Data
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single-index models for longitudinal data which may be unbalanced. In particular, a new three-stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resul...
متن کامل